On the Defining Number of (2n - 2)-Vertex Colorings of Kn x Kn

نویسندگان

  • D. A. Mojdeh
  • M. Alishahi
  • M. Mohagheghi Nejad
چکیده مقاله:

این مقاله چکیده ندارد

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Biplanar Crossing Number of Kn

The crossing number cr(G) of a graph G is the minimum number of edge crossings over all drawings of G in the Euclidean plane. The k-planar crossing number crk(G) of G is min{cr(G1) + cr(G2) + . . .+ cr(Gk)}, where the minimum is taken over all possible decompositions of G into k subgraphs G1, G2, . . . , Gk. The problem of computing the crossing number of complete graphs, cr(Kn), exactly for sm...

متن کامل

The number of 8-cycles in 2-factorizations of Kn

This paper gives a complete solution (with one possible exception) of the problem of constructing 2-factorizations of Kn containing a specified number of 8-cycles.

متن کامل

The linear 3-arboricity of Kn, n and Kn

A linear k-forest is a forest whose components are paths of length at most k. The linear k-arboricity of a graph G, denoted by lak(G), is the least number of linear k-forests needed to decompose G. In this paper, we completely determine lak(G) when G is a balanced complete bipartite graph Kn,n or a complete graph Kn, and k = 3. © 2007 Elsevier B.V. All rights reserved.

متن کامل

The drawing Ramsey number Dr(Kn)

Bounds are determined for the smallest m = Dr(Kn) such that every drawing of Km in the plane (two edges have at most one point in common) contains at least one drawing of Kn with the maximum number (:) of crossings. For n = 5 these bounds are improved to 11 :::; Dr(K5) 113. A drawing D( G) of a graph G is a special realization of G in the plane. The vertices are mapped into different points of ...

متن کامل

More on the crossing number of Kn: Monotone drawings

The Harary-Hill conjecture states that the minimum number of crossings in a drawing of the complete graph Kn is Z(n) := 1 4 ⌊ n 2 ⌋ ⌊ n−1 2 ⌋ ⌊ n−2 2 ⌋ ⌊ n−3 2 ⌋ . This conjecture was recently proved for 2-page book drawings of Kn. As an extension of this technique, we prove the conjecture for monotone drawings of Kn, that is, drawings where all vertices have different x-coordinates and the edg...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 31  شماره No. 1

صفحات  49- 61

تاریخ انتشار 2011-01-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023